On Symmetry of Independence Polynomials
نویسندگان
چکیده
An independent set in a graph is a set of pairwise non-adjacent vertices, and α(G) is the size of a maximum independent set in the graph G. A matching is a set of non-incident edges, while μ(G) is the cardinality of a maximum matching. If sk is the number of independent sets of cardinality k in G, then I(G;x) = s0 + s1x+ s2x 2 + ...+ sαx , α = α (G) , is called the independence polynomial of G (Gutman and Harary [7]). If sj = sα−j , 0 ≤ j ≤ ⌊α/2⌋, then I(G;x) is called symmetric (or palindromic). It is known that the graph G ◦ 2K1 obtained by joining each vertex of G to two new vertices, has a symmetric independence polynomial [23]. In this paper we show that for every graph G and for each non-negative integer k ≤ μ (G), one can build a graph H , such that: G is a subgraph of H , I (H ;x) is symmetric, and I (G ◦ 2K1;x) = (1 + x) k · I (H ;x).
منابع مشابه
Symmetry classes of polynomials associated with the dihedral group
In this paper, we obtain the dimensions of symmetry classes of polynomials associated with the irreducible characters of the dihedral group as a subgroup of the full symmetric group. Then we discuss the existence of o-basis of these classes.
متن کاملSymmetry and unimodality of independence polynomials of path-like graphs
We prove the symmetry and unimodality of the independence polynomials of various graphs constructed by means of a recursive “path-like” construction. Our results provide a substantial generalization of the work of Zhu [Australas. J. Combin. 38 (2007), 27–33] and others.
متن کاملHigher Order Degenerate Hermite-Bernoulli Polynomials Arising from $p$-Adic Integrals on $mathbb{Z}_p$
Our principal interest in this paper is to study higher order degenerate Hermite-Bernoulli polynomials arising from multivariate $p$-adic invariant integrals on $mathbb{Z}_p$. We give interesting identities and properties of these polynomials that are derived using the generating functions and $p$-adic integral equations. Several familiar and new results are shown to follow as special cases. So...
متن کامل2 9 Se p 20 13 Operations of graphs and unimodality of independence polynomials ∗
Given two graphs G and H, assume that C = {C1, C2, . . . , Cq} is a clique cover of G and U is a subset of V (H). We introduce a new graph operation called the clique cover product, denoted by G ⋆ HU , as follows: for each clique Ci ∈ C , add a copy of the graph H and join every vertex of Ci to every vertex of U . We prove that the independence polynomial of G ⋆ HU I(G ⋆ H ;x) = I(H;x)I(G; xI(H...
متن کاملOn the Stability of Independence Polynomials
The independence polynomial of a graph is the generating polynomial for the number of independent sets of each size and its roots are called independence roots. We investigate the stability of such polynomials, that is, conditions under which the independence roots lie in the left half-plane. We use results from complex analysis to determine graph operations that result in a stable or nonstable...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Symmetry
دوره 3 شماره
صفحات -
تاریخ انتشار 2011